Что такое линейное и фазное напряжение
Перейти к содержимому

Что такое линейное и фазное напряжение

  • автор:

Фазное и линейное напряжение: различия, применение и преимущества

В данной статье рассматривается понятие фазного и линейного напряжения, их отношение друг к другу и основные свойства каждого из них.

Фазное и линейное напряжение: различия, применение и преимущества обновлено: 4 сентября, 2023 автором: Научные Статьи.Ру

Помощь в написании работы

Введение

В физике существует понятие напряжения, которое играет важную роль в электрических цепях. Напряжение может быть представлено в двух формах: фазном и линейном. В данном объяснении мы рассмотрим суть этих двух видов напряжения, а также их отношение и основные свойства.

Нужна помощь в написании работы?

Написание учебной работы за 1 день от 100 рублей. Посмотрите отзывы наших клиентов и узнайте стоимость вашей работы.

Фазное напряжение

Фазное напряжение – это напряжение, которое измеряется между двумя фазами в трехфазной системе электроснабжения. В трехфазной системе электрической сети есть три фазы, обозначаемые как A, B и C. Фазное напряжение измеряется между любыми двумя из этих фаз.

Фазное напряжение обычно обозначается как Uф или Uфас. Оно измеряется в вольтах (В) и является мгновенным значением напряжения в определенный момент времени.

Фазное напряжение в трехфазной системе имеет специфическую форму синусоидальной волны. Это означает, что напряжение меняется по синусоидальному закону со временем. Фазное напряжение достигает своего максимального значения, называемого амплитудным значением, и затем снова падает до минимального значения и так далее.

Фазное напряжение в трехфазной системе имеет определенную фазовую разность между фазами. Это означает, что напряжение в каждой фазе отстает или опережает другие фазы на определенный угол. Фазовая разность обычно составляет 120 градусов или 2π/3 радиан.

Линейное напряжение

Линейное напряжение – это напряжение, которое измеряется между любой фазой и нейтралью в трехфазной системе электроснабжения. В трехфазной системе электрической сети есть три фазы, обозначаемые как A, B и C, и нейтраль (N). Линейное напряжение измеряется между любой фазой и нейтралью.

Линейное напряжение обычно обозначается как Uл или Uлин. Оно измеряется в вольтах (В) и является мгновенным значением напряжения в определенный момент времени.

Линейное напряжение в трехфазной системе также имеет форму синусоидальной волны, так же как и фазное напряжение. Однако, линейное напряжение имеет большую амплитуду, чем фазное напряжение. Амплитуда линейного напряжения в трехфазной системе равна амплитуде фазного напряжения, умноженной на коэффициент √3 (приближенно 1.732).

Линейное напряжение в трехфазной системе также имеет фазовую разность между фазами и нейтралью. Фазовая разность между линейным напряжением и фазным напряжением составляет 30 градусов или π/6 радиан. Это означает, что линейное напряжение опережает фазное напряжение на этот угол.

Отношение фазного и линейного напряжения

Отношение фазного и линейного напряжения в трехфазной системе электроснабжения определяется коэффициентом √3 (приближенно 1.732). Этот коэффициент используется для преобразования фазного напряжения в линейное напряжение и наоборот.

В трехфазной системе электроснабжения фазное напряжение измеряется между любой фазой и нейтралью. Оно обозначается как Uф или Uфаза. Фазное напряжение имеет форму синусоидальной волны и измеряется в вольтах (В).

Линейное напряжение, с другой стороны, измеряется между любыми двумя фазами в трехфазной системе. Оно обозначается как Uл или Uлин. Линейное напряжение также имеет форму синусоидальной волны и измеряется в вольтах (В).

Отношение фазного и линейного напряжения определяется следующим образом:

Uл = Uф * √3

где Uл – линейное напряжение, Uф – фазное напряжение.

То есть, чтобы получить линейное напряжение, мы умножаем фазное напряжение на коэффициент √3. И наоборот, чтобы получить фазное напряжение, мы делим линейное напряжение на коэффициент √3.

Это отношение между фазным и линейным напряжением важно для понимания и расчета трехфазных систем электроснабжения. Оно позволяет нам переходить от одного типа напряжения к другому и учитывать различия в их амплитуде и фазовой разности.

Свойства фазного и линейного напряжения

Фазное и линейное напряжение в трехфазной системе электроснабжения обладают рядом свойств, которые важно учитывать при проектировании и эксплуатации электрических систем. Рассмотрим некоторые из них:

Амплитуда

Фазное и линейное напряжение имеют одинаковую амплитуду, то есть максимальное значение напряжения во время положительной или отрицательной полуволны синусоидальной волны. Амплитуда напряжения измеряется в вольтах (В) и определяет максимальное электрическое потенциальное различие между двумя точками в системе.

Фазовая разность

Фазное и линейное напряжение имеют различную фазовую разность. Фазовая разность определяет сдвиг фазы между фазными или линейными напряжениями в трехфазной системе. В трехфазной системе симметричного напряжения фазовая разность между фазными напряжениями составляет 120 градусов, а между линейными напряжениями – 180 градусов.

Соединение

Фазное напряжение измеряется между фазой и нейтралью, поэтому оно обычно используется в однофазных и трехфазных системах с нейтралью. Линейное напряжение, с другой стороны, измеряется между двумя фазами и используется в трехфазных системах без нейтрали.

Мощность

Фазное и линейное напряжение также влияют на мощность, потребляемую в системе. Мощность, потребляемая в трехфазной системе, зависит от фазного напряжения и тока. Линейное напряжение также влияет на мощность, но в трехфазной системе мощность рассчитывается с использованием линейного напряжения и тока.

Учет этих свойств фазного и линейного напряжения позволяет эффективно проектировать и управлять трехфазными системами электроснабжения, обеспечивая надежную и эффективную работу электрических устройств и оборудования.

Сравнительная таблица фазного и линейного напряжения

Свойство Фазное напряжение Линейное напряжение
Определение Напряжение между одной фазой и нулевым проводом Напряжение между двумя фазами
Обозначение
Значение Меньше линейного напряжения Больше фазного напряжения
Соотношение Uф = Uл / √3 Uл = Uф * √3
Применение Используется в однофазных системах Используется в трехфазных системах

Заключение

Фазное и линейное напряжение являются важными понятиями в физике. Фазное напряжение относится к напряжению, измеряемому между фазами в трехфазной системе. Линейное напряжение, с другой стороны, относится к напряжению, измеряемому между любыми двумя фазами и нулевым проводом. Отношение фазного и линейного напряжения зависит от типа системы и может быть разным. Важно понимать, что фазное и линейное напряжение имеют разные свойства и могут быть использованы в различных ситуациях. Понимание этих понятий поможет студентам лучше разобраться в электрических системах и их характеристиках.

Фазное и линейное напряжение: различия, применение и преимущества обновлено: 4 сентября, 2023 автором: Научные Статьи.Ру

Линейное и фазное напряжение — отличие и соотношение

Фазное напряжение – это напряжение конкретной фазы, измеренное между фазой и нейтралью генератора. Линейное напряжение — это напряжение между двумя разными фазами генератора (сети).

В этой краткой статье, не вдаваясь в историю сетей переменного тока, разберемся в соотношениях между фазными и линейными напряжениями. Ответим на вопросы о том, что такое фазное напряжение и что такое линейное напряжение, как они соотносятся между собой и почему эти соотношения именно таковы.

Ни для кого не секрет, что сегодня электроэнергия от генерирующих электростанций подается к потребителям по высоковольтным линиям электропередач с частотой 50 Гц. На трансформаторных подстанциях высокое синусоидальное напряжение понижается, и распределяется по потребителям на уровне 220 или 380 вольт. Где-то сеть однофазная, где-то трехфазная, однако давайте разбираться.

Линейное и фазное напряжение - отличие и соотношение

Действующее значение и амплитудное значение напряжения

Прежде всего отметим, что когда говорят 220 или 380 вольт, то имеют ввиду действующие значения напряжений, выражаясь математическим языком — среднеквадратичные значения напряжений . Что это значит?

Это значит, что на самом деле амплитуда Um (максимум) синусоидального напряжения, фазного Umф или линейного Umл, всегда больше этого действующего значения. Для синусоидального напряжения его амплитуда больше действующего значения в корень из 2 раз, то есть в 1,414 раза.

Так что для фазного напряжения в 220 вольт амплитуда равна 310 вольт, а для линейного напряжения в 380 вольт амплитуда окажется равной 537 вольт. А если учесть, что напряжение в сети никогда не бывает стабильным, то эти значения могут быть как ниже, так и выше. Данное обстоятельство всегда следует учитывать, например выбирая конденсаторы для трехфазного асинхронного электродвигателя.

Фазное сетевой напряжение

Обмотки генератора соединены по схеме «звезда», и объединены концами X, Y и Z в одной точке (в центре звезды), которая называется нейтралью или нулевой точкой генератора. Это четырехпроводная трехфазная схема. К выводам обмоток A, B и C присоединяются линейные провода L1, L2 и L3, а к нулевой точке — нейтральный провод N.

Напряжения между выводом A и нулевой точкой, B и нулевой точкой, С и нулевой точкой, — называются фазными напряжениями, их обозначают Ua, Ub и Uc, ну а поскольку сеть симметрична, то можно просто написать Uф — фазное напряжение.

В трехфазных сетях переменного тока большинства стран стандартное фазное напряжение равно приблизительно 220 вольт — напряжение между фазным проводом и нейтральной точкой, которая обычно заземляется, и ее потенциал принимается равным нулю, потому она и называется еще нулевой точкой .

Линейное напряжение трехфазной сети

Напряжения между выводом A и выводом B, между выводом B и выводом C, между выводом C и выводом A, — называются линейными напряжениями, то есть это напряжения между линейными проводниками трехфазной сети. Их обозначают Uab, Ubc, Uca, или можно просто написать Uл.

Стандартное линейное напряжение в большинстве стран равно приблизительно 380 вольт. Легко заметить в данном случае, что 380 больше 220 в 1,727 раза, и, пренебрегая потерями, ясно, что это квадратный корень из 3, то есть 1,732. Безусловно, напряжение в сети все время в ту или другую сторону колеблется в зависимости от текущей загруженности сети, но соотношение между линейными и фазными напряжениями именно таково.

Откуда взялся корень из 3

В электротехнике часто применяют векторный метод изображения синусоидально изменяющихся во времени величин напряжений и токов.

График зависимости величины проекции от времени есть синусоида. И если амплитуда напряжения — это длина вектора U, то проекция, которая меняется со временем — это текущее значение напряжения, а синусоида отражает динамику напряжения.

Так вот, если теперь изобразить векторную диаграмму трехфазных напряжений, то получится, что между векторами трех фаз одинаковые углы по 120°, и тогда если длины векторов — это действующие значения фазных напряжений Uф, то, чтобы найти линейные напряжения Uл, необходимо вычислить РАЗНОСТЬ любой пары векторов двух фазных напряжений. Например, Ua – Ub.

Выполнив построение методом параллелограмма, увидим, что вектор Uл = Uа + (-Ub), и в результате Uл = 1,732Uф. Отсюда и получается, что если стандартные фазные напряжения равны 220 вольт, то соответствующие линейные будут равны 380 вольт.

Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Не пропустите обновления, подпишитесь на наши соцсети:

Линейное напряжение

В электрических цепях бывают разные типы напряжения. Линейное напряжение можно наблюдать в трехфазной сети, где оно возникает между двумя фазовыми проводами. В большинстве случаев его уровень достигает 380 Вольт.

Отличие линейного от фазного напряжения

Если представить трехфазную цепь, то четко понятно, что в ней есть определенное напряжение между фазными контактами и фазным и нулевым проводом. Это происходит из-за того, что в этой схеме используется четырёхпроводная трехфазная цепь. Главные её характеристики – напряжение и частота. Напряжение, возникающее в цепи между двумя фазными проводами – это линейное, а то, что появляется между фазным и нулевым – фазным.

4-проводная сеть

Примечательной особенностью линейного напряжения является то, что именно по нему рассчитываются токи и другие параметры трехфазной цепи. Кроме того, к такой схеме можно подключать не только стандартные трехфазные контакты, но и однофазные (это различные бытовые приборы, приемники). Номинальное равняется 380 вольт, при этом оно может изменяться в зависимости от скачков или других перемен в локальной сети.

Существует несколько вариантов такого соединения, скажем, система с нейтралью под заземлением является самой популярной. Она характеризуется тем, что подключение к ней производится по особой схеме:

  1. Однофазные отводы подключаются к фазным проводам;
  2. Трехфазные – к трехфазным, соответственно.

Линейное напряжение имеет очень широкое использование благодаря своей безопасности и удобства разветвления сети. Электрические приборы подключаются только к одному- фазному проводу, опасность представляет он один. Расчет системы очень прост, в нем руководствуются стандартными формулами из физики. При этом, чтобы измерить этот параметр сети, достаточно воспользоваться простым мультиметром, для того, чтобы замерить характеристики фазового подключения потребуется несколько специальных устройств (датчики тока, вольтметры и прочие).

Некоторые особенности сети:

  1. При разводке такой проводки не требуется использовать профессиональные приборы- все измерения проводятся отвертками с индикаторами;
  2. При соединении проводников нет необходимости подключать нулевой провод, т. к. благодаря свободной нейтрали, риск поражения током крайне мал;
  3. Электротехника использует такую схему подключения для различных электродвигателей и других устройств, требующих высокую мощность для работы. Дело в том, что используя этот тип напряжения есть возможность повысить КПД на треть, что является весьма полезным свойством, в особенности, для асинхронного двигателя;
  4. Схема используется как для переменного тока, так и для постоянного;
  5. Нужно помнить, что однофазное соединение можно подключить к трехфазной сети, но не наоборот;
  6. Но, у такой цепи есть и определенные недостатки. В линейном соединении проводников очень сложно обнаружить повреждения. Это способствует повышенной пожарной опасности.

Соответственно, основная разница между фазовым и линейным напряжением заключается в разности подсоединяемых проводов обмоток.

Для контроля и выравнивания этого параметра часто используется специальный прибор — линейный стабилизатор напряжения. Он позволяет поддерживать показатель на определённом уровне, при этом нормализуя повышенное. Еще одно его определение – импульсный стабилизатор. Устройство может подключаться к розетке, контактам электрических приборов и т. д.

Соединение

Линейное и фазное напряжение часто используется для запуска генератора. Рассмотрим, какие бывают соединения проводов на примере трехфазного генератора. Он состоит из первичных и вторичных обмоток. Их можно соединить звездой или треугольником.

Схема звезда и треугольник

Соединяя проводники в «треугольник» начало второй фазы соединяется с концом первой. Помимо этого, к каждому фазному проводнику подключаются линейные провода источника. Это выравнивает токи, исходя из чего, фазовое напряжение становится равным линейному. Аналогичная схема и для подключения трансформатора и двигателя.

Такое соединение также позволяет обеспечить нулевую электрическую движущую силу и постоянную частоту. Токи обмоток сдвигаются на 120 градусов, благодаря чему в общей схеме это соединение имеет вид трех отдельных токов, которые относительно друг друга сдвинуты на 2/3 периода. Это соотношение может изменяться в зависимости от типа подключаемого устройства и характеристик сети.

Формулы для расчета двигателей

Аналогично можно подсоединить трехфазный асинхронный двигатель, стабилизатор или усилитель в сеть 220 вольт «звездой». Эта схема подразумевает подключение начала обмоток к сети. Тогда от входа начнет двигаться ток с характеристиками сети. Контакты выхода (концы обмоток), соединятся с началом при помощи специальных перемычек. Таким образом, межфазное напряжение будет протекать через все активные контакты.

В изолированной сети используются различные пусковые конденсаторы для запуска системы. Аналогично соединяются клеммы на обмотках. Это подключение часто используется для понижающих трансформаторов и различных двигателей, предусмотренных для работы в однофазной сети.

Расчет

Для того чтобы рассчитать линейное напряжение используется формула Киргофа:

∑ Ik = 0;, которая говорит о том, что в любом узле цепи сила тока равна нулю.

И закон Ома:

I = U / R . Зная эти законы можно без проблем рассчитать любую характеристику определенного контакта или сети.

При разветвлении системы может понадобиться вычислить напряжение между фазовым проводом и нейтральным:

IL = IF – эти параметры могут изменяться в зависимости от подключения. Отсюда следует, что линейные параметры равняются фазовым.

Но, в определенных ситуациях, необходимо рассчитать, чем равно соотношение напряжения между фазовым и линейным проводниками.

Для этого используется формула: Uл=Uф∙√3, где:

Uл –линейное, Uф – фазовое. Формула справедлива только если IL = IF.

При включении в сеть дополнительных отводов, нужно отдельно вычислять фазовое напряжение каждого из подключений. Тогда вместо Uф подставляются данные этого конкретного отвода.

При работе с промышленными установками может потребоваться расчет реактивной трехфазной мощности. Он производится по формуле:

Аналогичный вид имеет формула активной:

Разбираемся в разнице между фазным и линейным напряжениями

фазное и линейное напряжение

Фазное напряжение и линейное, соединение звездой и треугольником. В разговорах профессиональных электриков можно нередко слышать эти слова. Но даже не всякий электрик знает точное их значение. Так что же означают эти термины? Попробуем разобраться.

На заре развития электротехники энергия электрических генераторов и батарей передавалась потребителям по сетям постоянного тока. В США главным апологетом этой идеи был знаменитый изобретатель Томас Эдисон и крупнейшие на то время энергетические компании, подчиняясь авторитету «гиганта инженерной мысли», беспрекословно внедряли её в жизнь.

Однако, когда встал вопрос о создании разветвлённой электрической сети потребителей, питающейся от расположенного на большом расстоянии генератора, что потребовало создания первой линии электропередачи, победил проект никому тогда неизвестного сербского эмигранта Николы Теслы.

Он кардинально изменил саму идею системы электроснабжения, применив в ней вместо постоянного, генератор и электрические линии переменного тока. что позволило значительно снизить потери энергии, расход материалов и повысить энергоэффективность.

В этой системе использовался созданный Теслой трёхфазный генератор переменного тока, а передача энергии осуществлялась с помощью трансформаторов напряжения, изобретённых русским учёным П. Н. Яблочковым.

Другой русский инженер М. О. Доливо‑Добровольский уже через год не только создал подобную систему электроснабжения в России, но и значительно усовершенствовал её.

У Теслы для генерации и передачи энергии использовались шесть проводов, Добровольский предложил путём видоизменения подключения генератора сократить это количество до четырех.

Экспериментируя над созданием генератора, он попутно изобрёл асинхронный электродвигатель с короткозамкнутым ротором, находящий и поныне самое широкое применение в промышленности.

Что такое фаза: определяемся в значении

Понятие фазы существует только в цепях синусоидального переменного тока. Математически такой ток можно представить и описать уравнениями вращающегося вектора, закреплённого одним концом в начале координат. Изменение величины напряжения цепи с течением времени будет представлять собой проекция этого вектора на ось координат.

Значение этой величины зависит от угла, под которым находится вектор к координатной оси. Строго говоря, угол вектора — это и есть фаза.

Значение напряжения измеряется относительно потенциала Земли, всегда равного нулю. Поэтому провод, в котором существует напряжение переменного тока, называют фазным, а другой, заземлённый, — нулевым.

Фазовый угол одиночного вектора не представляет большого практического значения — в электрических сетях он за 1/50 сек совершает полный оборот в 360°. Куда большее применение имеет относительный угол между двумя векторами.

В цепях с так называемыми реактивными элементами: катушками, конденсаторами, он образуется между векторами значений напряжения и тока. Такой угол называют фазовым сдвигом.

Если величины реактивных нагрузок не меняются во времени, то и фазовый сдвиг между током и напряжением будет постоянным. А уже с его помощью можно производить анализ и расчёт электрических цепей.

В XIX веке, когда ещё не было научной теории электричества, и все разработки нового оборудования осуществлялись опытным путем, экспериментаторы заметили, что виток провода, вращающийся в постоянном магнитном поле, создаёт на своих концах электрическое напряжение.

Затем выяснилось, что оно изменяется по синусоидальному закону. Если намотать катушку из многих витков, напряжение пропорционально увеличится. Так появились первые электрические генераторы, которые могли обеспечивать потребителей электрической энергией.

Тесла в генераторе, разрабатываемом для крупнейшей тогда в США Ниагарской гидроэлектростанции, для более эффективного использования магнитного поля, разместил в нем не одну катушку, а три.

[attention type=yellow]За один оборот ротора магнитное поле статора пересекали сразу три катушки благодаря чему отдача генератора увеличилась в корень из трёх раз и от него можно было запитать одновременно трёх различных потребителей.[/attention]

Экспериментируя с такими генераторами, первые инженеры‑электрики заметили, что напряжения в обмотках изменяются не одновременно. Когда, например, в одной из них оно достигает положительного максимума, в двух других оно будет равным половине отрицательного минимума и так периодически для каждой обмотки, а для математического описания такой системы уже нужна была система трёх вращающихся векторов с относительным углом между ними в 120°.

В дальнейшем оказалось, что если нагрузки в цепях обмоток сильно отличались друг от друга, это значительно ухудшало работу самого генератора. Выяснилось, что в больших разветвлённых сетях выгоднее не тащить к потребителям три различных линии электропередач, а подвести к ним одну трёхфазную и уже на конце её обеспечивать равномерное распределение нагрузок по каждой фазе.

Именно такую схему и предложил Доливо‑Добровольский, когда по одному выводу от каждой из трёх обмоток генератора соединяются вместе и заземляются, вследствие чего их потенциал становится одинаковым и равным нулю, а электрические напряжения снимаются с других трёх выводов обмоток.

Эта схема получила наименование «соединения звездой». Она и поныне является основной схемой организации трёхфазных электрических сетей.

Разберёмся что такое фазное напряжение

что такое фазное напряжение

Для создания таких сетей требуется провести от генератора к потребителям линию электропередачи, состоящую из трёх проводов фазных и одного нулевого. Конечно, в реальных сетях для уменьшения потерь в проводах на обоих концах линий подключаются ещё и повышающие и понижающие трансформаторы, но реальной картины работы сети это не меняет.

Нулевой провод нужен, чтобы зафиксировать передать к потребителю потенциал общего вывода генератора, ведь именно по отношению к нему создаётся напряжение в каждом фазном проводе.

Таким образом, фазное напряжение образуется и измеряется относительно общей точки соединения обмоток — нулевого провода. В хорошо сбалансированной по нагрузкам трёхфазной сети через нулевой провод течет минимальный ток.

На выходе трёхфазной линии электропередачи имеются три фазных провода: L1, L2, L3 и один нулевой — N. По существующим евростандартам они должны иметь цветовые обозначения:

  • L1 — коричневый;
  • L2 — чёрный;
  • L3 — серый;
  • N — синий;
  • Жёлто‑зелёный для защитного заземления.

Такие линии подводятся к большим серьёзным потребителям: предприятиям, городским микрорайонам и т. п. Но маломощным конечным потребителям, как правило, не нужны три источника напряжения, поэтому они подключаются к однофазным сетям, где имеется только один фазный и один нулевой провод.

Равномерным распределением нагрузок в каждой из трёх однофазных линий обеспечивается баланс фаз в трёхфазной системе электроснабжения.

[attention type=green]Таким образом, для организации однофазных сетей используется напряжение одного из фазных проводов относительно нулевого. Такое напряжение и называется фазным.
[/attention]
По принятому в большинстве стран стандарту для конечных потребителей оно должно составлять 220 В. На него рассчитывается и выпускается практически все бытовое электрооборудование. В США и некоторых странах Латинской Америки для однофазных сетей принято стандартное напряжение 127 В, а кое‑где и 110 В.

Что такое линейное напряжение сети

Что такое линейное напряжение

Преимущества однофазной сети в том, что один из проводов имеет потенциал, близкий к потенциалу Земли.

Это, во‑первых, помогает обеспечивать электробезопасность оборудования, когда риск поражения электротоком представляет только один, фазный провод.

Во‑вторых, такая схема удобна для разводки сетей, расчета и понимания их работы, проведения измерений. Так, для нахождения фазного провода не нужны специальные измерительные приборы, достаточно иметь индикаторную отвёртку.

Но от трёхфазных сетей можно получить и ещё одно напряжение, если подключить нагрузку между двумя фазными проводами. Оно будет по значению выше фазного напряжения, потому что будет представлять собой проекцию на координатную ось не одного вектора, а двух, расположенных под углом в 120° друг к другу.

Этот «довесок» и будет давать прирост примерно в 73%, или √3–1. По существующему стандарту линейное напряжение в трёхфазной сети должно быть равно 380 В.

Каково основное отличие этих напряжений

Если к такой сети подключить соответствующую нагрузку, например, трёхфазный электродвигатель, он будет давать механическую мощность, значительно большую, чем однофазный такого же размера и веса. Но подключить трёхфазную нагрузку можно двумя способами. Один, как уже было сказано — «звезда».

Если же начальные выводы всех трёх обмоток генератора или линейного трансформатора не соединять вместе, а подключить каждый из них к конечному выводу следующей, создав из обмоток последовательную цепочку, такое соединение называется «треугольником».

Особенность его в отсутствии нулевого провода, и для подключения к таким сетям нужно соответствующее трёхфазное оборудование, у которого нагрузки также соединены «треугольником».

При таком соединении в нагрузке действуют только линейные напряжения 380 В. Один пример: электродвигатель, включённый в трёхфазную сеть по схеме «звезда», при токе в обмотках 3,3 А будет развивать мощность 2190 Вт.

[attention type=red]Тот же двигатель, включенный «треугольником», будет в корень из трёх раз мощнее — 5570 Вт за счёт увеличения тока до 10 А.[/attention]

Получается, что, имея трёхфазную сеть и такой же электродвигатель, мы можем получить значительно больший выигрыш по мощности, чем при использовании однофазных, а просто изменив схему подключения, мы увеличим выходную мощность двигателя ещё втрое. Правда, его обмотки также должны быть рассчитаны на повышенный ток.

Таким образом, основное отличие между двумя видами напряжений в сетях переменного тока, как мы выяснили, — это величина линейного напряжения, которая в 3 раза больше фазного. За величину фазного напряжения принимается абсолютное значение разности потенциалов фазного провода и Земли. Линейное же напряжение — это относительная величина разности потенциалов между двумя фазными проводами.

[attention type=green]Ну и в завершении статьи два видео о соединении звездой и треугольником, для тех кто хочет разобраться подробнее.[/attention]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *